Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases.

نویسندگان

  • Ronald L Koder
  • Chad A Haynes
  • Michael E Rodgers
  • David W Rodgers
  • Anne-Frances Miller
چکیده

Bacterial nitroreductases are NAD(P)H-dependent flavoenzymes which catalyze the oxygen-insensitive reduction of nitroaromatics, quinones, and riboflavin derivatives. Despite their broad substrate specificity, their reactivity is very specific for two-electron, not one-electron, chemistry. We now describe the thermodynamic properties of the flavin mononucleotide cofactor of Enterobacter cloacae nitroreductase (NR), determined under a variety of solution conditions. The two-electron redox midpoint potential of NR is -190 mV at pH 7.0, and both the pH dependence of the midpoint potential and the optical spectrum of the reduced enzyme indicate that the transition is from neutral oxidized flavin to anionic flavin hydroquinone. The one-electron-reduced semiquinone states of both the free enzyme and an NR-substrate analogue complex are strongly suppressed based on optical spectroscopy and electron paramagnetic resonance measurements. This can explain the oxygen insensitivity of NR and its homologues, as it makes the execution of one-electron chemistry thermodynamically unfavorable. Therefore, we have established a chemical basis for the recent finding that a nitroreductase is a member of the soxRS oxidative defense regulon in Escherichia coli [Liochev, S. I., Hausladen, A., Fridovich, I. (1999) Proc. Natl. Acad. Sci. U.S.A. 96 (7), 3537-3539]. We also report binding affinities for the FMN cofactor in all three oxidation states either determined fluorometrically or calculated using thermodynamic cycles. Thus, we provide a detailed picture of the thermodynamics underlying the unusual activity of NR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase.

We identified the nfsA gene, encoding the major oxygen-insensitive nitroreductase in Escherichia coli, and determined its position on the E. coli map to be 19 min. We also purified its gene product, NfsA, to homogeneity. It was suggested that NfsA is a nonglobular protein with a molecular weight of 26,799 and is associated tightly with a flavin mononucleotide. Its amino acid sequence is highly ...

متن کامل

Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli.

Nitroheterocyclic and nitroaromatic compounds constitute an enormous range of chemicals whose potent biological activity has significant human health and environmental implications. The biological activity of nitro-substituted compounds is derived from reductive metabolism of the nitro moiety, a process catalyzed by a variety of nitroreductase activities. Resistance of bacteria to nitro-substit...

متن کامل

Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).

Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitrored...

متن کامل

Purification and Characterization of an Oxygen - insensitive NAD ( P ) H Nitroreductase from

The reductive products of several nitroaromatic compounds have been found to be toxic, mutagenic, and carcinogenic. The nitroreductases present in intestinal microflora have been implicated in the biotransformation of these compounds to their deleterious metabolites. A “classical” nitroreductase has been purified from Enterobacter cloacae 587-fold using a protocol which yields approximately 1 ...

متن کامل

Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae.

The reductive products of several nitroaromatic compounds have been found to be toxic, mutagenic, and carcinogenic. The nitroreductases present in intestinal microflora have been implicated in the biotransformation of these compounds to their deleterious metabolites. A "classical" nitroreductase has been purified from Enterobacter cloacae 587-fold using a protocol which yields approximately 1 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 41 48  شماره 

صفحات  -

تاریخ انتشار 2002